- Mohamadi, F., Richards, N. G. J., Guida, W. C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrichson, T. & Still, W. C. (1990). J. Comput. Chem. 11, 440–467.
- Montgomery, D. W., Celniker, A. & Zukoski, C. F. (1987). Transpl. Proc. 19, 1295-1296.
- Rinehart, K. L. Jr (1985). US Patent 4 493 796.
- Rinehart, K. L. Jr, Cook, J. C. Jr, Pandey, R. C., Gaudioso, L. A., Meng, H., Moore, M. L., Gloer, J. B., Wilson, G. R., Gutowsky, R. E., Zierath, P. D., Shield, L. S., Li, L. H., Renis, H. E., McGovern, J. P. & Canonico, P. G. (1982). Pure Appl. Chem. 54, 2409–2424.
- Shen, G. K., Zukoski, C. F. & Montgomery, D. W. (1992). Int. J. Immunopharmac. 14, 63-73.
- Still, W. C., Mohamadi, F., Richards, N. G. J., Guida, W. C., Lipton, M., Liskamp, R., Chang, G., Hendrickson, T., DeGunst, F. & Hasel, W. (1990). *MACROMODEL*. Version 3.1X. Columbia Univ., New York, NY 10027, USA.
- Voet, D. & Voet, J. G. (1990). *Biochemistry*, pp. 488–491, 708–709, 1168–1169. New York: Wiley.

Acta Cryst. (1995). C51, 1614-1617

Photochromic 8-Ethoxy-2-methylspiro(*syn*-5,6-benzo-2-azabicyclo[2.2.2]oct-5-ene-3,3'-[3*H*]naphth[2,1-*b*][1,4]oxazine)

JEAN-PIERRE REBOUL*

GERCTOP, URA CNRS 1411, Faculté de Pharmacie, 27 Boulevard Jean-Moulin, 13385 Marseille CEDEX 5, France

André Samat, Pierre Laréginie, Vladimir Lokshin and Robert Guglielmetti

Laboratoire de Chimie Organique, Faculté des Sciences de Luminy, GCOBO, URA CNRS 1320, 163 Avenue de Luminy, 13288 Marseille CEDEX 2, France

Gèrard Pèpe

CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille CEDEX 9, France

(Received 27 October 1994; accepted 3 January 1995)

Abstract

In the photochromic title compound, $C_{25}H_{24}N_2O_2$, the C_{spiro} —O bond can be broken on photoexcitation. Conformational parameters and oxazine-ring puckering have been investigated by considering similar photochromic compounds. It is shown that when the C_{spiro} —O bond is elongated, and therefore weakened, the ring-puckering coefficient is smaller and photochromic activity increases.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

Comment

Spirooxazines are colourless photochromic compounds (Chu, 1990), which transform under UV irradiation into strongly coloured photomerocyanines. The reaction is reversible either by heat or by visible-light absorption.

The rate of decolouration depends on the electronic properties or steric hindrances of either the heterocyclic part or the annulation of the benzoxazinic ring (Tardieu, Dubest, Aubard, Kellmann, Tfibel, Samat & Guglielmetti, 1992; Rickwood, Marsden, Ormsby, Staunton, Wood, Hepworth & Gabbutt, 1994). Structural features, such as the C_{spiro}-O bond distance, the distances of oxazine N and O atoms from the adjacent phenyl ring mean plane, intramolecular short contacts, and oxazine ring planarity, which are related to the difference in photochromic behaviour are discussed here. In order to obtain a better insight into the correlation between molecular substitution, conformation and photochemical reactivity, the molecular structure of the title compound, (1), has been established and compared with the conformation of some other spirooxazinic compounds. The molecular conformation and atomic labelling are shown in Fig. 1.

The title molecule contains a naphthoxazine moiety linked to a substituted benzo-2-azabicyclo[2.2.2] fragment through the spiro atom, C12, which displays regular sp^3 hybridization. The bond angles at the C12 spiro carbon have a mean value of 109.4 (8)°. Table 3 shows that the O14—C12—C13 bond angle of the spiro C atom in the oxazine ring has a mean value of 109.1 (12)° for seven spirooxazines. The conformation of the oxazine ring of the title compoud is described as a twisted boat along the C13···C25 axis.

The phenyl and naphthyl moieties are planar (r.m.s. deviations of 0.002 and 0.006 Å, respectively) and are approximately orthogonal to each other [dihedral angle 87.1 (7)°]. The benzo-2-azabicyclo[2.2.2] fragment with its cage-like structure has a small degree of freedom. It displays D_3 symmetry with a mean torsion angle of 4.2 (3)°, probably as a result of the bulky naphthoxazine moiety linking through the spiro C12 atom.

Fig. 1. Molecular view of the title compound drawn using ORTEP (Johnson, 1965) with displacement ellipsoids at 50% probability. H atoms are represented as spheres of arbitrary radii.

Atoms N19 and O14 are located 0.148(6) and -0.016(4) Å, respectively, from the mean plane of the adjacent phenyl ring (atoms C20-C25). Thus, the O atom is in the mean plane but the N atom is not. This is observed for five similar molecules, as shown in Table 3, and can be correlated to the O— C_{sp^2} — C_{sp^2} —N torsion angle [mean value $5(4)^{\circ}$].

At first sight, the planarity of the oxazine may be related to photochromic properties. Planarity can be evaluated with the χ^2 Pearson test (a flat fragment has a small χ^2 value). For the first three oxazinic compounds described in Table 3, it has been shown experimentally (Tardieu et al., 1992; Laréginie, Samat & Guglielmetti, 1993) that photochromic activity decreases from (1) to (3) [(3A) and (3B) are crystallographically independent molecules]. This is in agreement with the increase in χ^2 : the more planar the oxazinic ring, the less the molecule is photocolourable. Clegg et al. (Clegg, Norman, Flood, Sallans, Kwak, Kwiatkowski & Lasch, 1991) state that the non-methyl-substituted compound, (4), exhibits photochromic properties and that the methylated derivatives, molecules (5A) and (5B), do not. An additional methyl group on the oxazine ring sterically hinders the formation of the merocyanine form and therefore decreases photochromic activity. One can observe that the methyl-substituted molecules, (5A) and (5B), have indeed increased χ^2 values.

These observations have to be compared and, perhaps, related to previous work by Aldoshin (1994), who correlated the cleavage of the C-O bond with specific $n-\sigma^*$ orbital interactions involving indolinic N and O on the one hand, and the unoccupied σ^* orbitals of the C—O bond on the other.

The C_{spiro}—O mean bond distance [1.468(5)Å; Table 3] is longer than the normal value (1.41–1.43 Å) and seems to be a common structural feature of photochromic spirooxazines. The long C_{spiro}-O distance explains the easy cleavage of this bond. The calculated C_{spiro} — C_{sp^2} mean distance [1.512 (13) Å] retains its normal value (C_{sp^3} — $C_{sp^2} = 1.52$ Å) and the C_{sp^2} atom conserves its hybridization in the spiro and merocyanine forms.

Experimental

The synthesis of the title compound will be described elswhere (Laréginie, Samat & Guglielmetti, 1995). Crystals suitable for X-ray analysis were obtained by recrystallization from methanol solution. The density D_m was measured by flotation.

Crystal data

$C_{25}H_{24}N_2O_2$	Cu $K\alpha$ radiation
$M_r = 384.48$	$\lambda = 1.5418 \text{ Å}$
Monoclinic	Cell parameters from 25
$P2_1/c$	reflections
a = 7.957(5) Å	$\theta = 2.00-56.00^{\circ}$
b = 11.920(3) Å	$\mu = 0.650 \text{ mm}^{-1}$
c = 21.533(3) Å	T = 293 K
$\beta = 99.72(1)^{\circ}$	Parallelepiped
$V = 2013.1(1) \text{ Å}^3$	$0.42 \times 0.12 \times 0.08 \text{ mm}$
Z = 4	Transparent
$D_{\rm r} = 1.268 {\rm Mg} {\rm m}^{-3}$	-
$D_m = 1.26(1) \text{ Mg m}^{-3}$	

Data collection

Enraf–Nonius CAD-4	$R_{\rm int} = 0.02$
diffractometer	$\theta_{\rm max} = 56^{\circ}$
θ scans	$h = -7 \rightarrow 7$
Absorption correction:	$k = 0 \rightarrow 10$
none	$l = 0 \rightarrow 20$
4942 measured reflections	3 standard reflections
4389 independent reflections	frequency: 60 min
1325 observed reflections	intensity decay: none
$[l > 3.0\sigma(l)]$	

Refinement

Refinement on F	Unit weights applied
R = 0.052	$(\Delta/\sigma)_{\rm max} = 0.3$
wR = 0.052	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.19	$\Delta \rho_{\rm min} = -0.2 \ {\rm e} \ {\rm \AA}^{-3}$
1325 reflections	Extinction correction: none
334 parameters	Atomic scattering fac-
All H-atom parameters	tors from SHELX76
refined	(Sheldrick, 1976)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$B_{\rm eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	х	у	Ζ	B_{eq}
C1	-0.0796 (9)	0.3945 (6)	0.3805 (4)	4.6 (5)
C2	0.0970 (9)	0.3732 (6)	0.3969 (3)	3.6 (4)
C3	0.1509 (8)	0.2982 (5)	0.4442 (3)	2.7 (3)
C4	0.0341 (9)	0.2422 (5)	0.4753 (3)	2.9 (3)
C5	-0.1401 (9)	0.2648 (7)	0.4588 (4)	4.0 (4)
C6	-0.1949 (9)	0.3388 (7)	0.4113 (4)	4.7 (4)
C7	0.3319 (8)	0.2616 (5)	0.4676 (3)	2.7 (3)
C8	0.3420 (8)	0.1322 (6)	0.4585 (3)	3.1 (3)
C9	0.2219 (9)	0.0759 (6)	0.4980 (3)	3.5 (3)
C10	0.1226 (9)	0.1677 (6)	0.5265 (3)	3.2 (3)

 $C_{25}H_{24}N_2O_2$

N11	0.2446 (6)	0.2338 (4)	0.5709 (2)	2.7 (2)	C2C1C6	120.3 (7)	N11-C12-C13	114.5 (5)
C12	0.3730(8)	0.2876 (5)	0.5387 (3)	2.7 (3)	C1—C2—C3	118.5 (6)	N11-C12-014	108.5 (4)
C13	0.3931 (9)	0.4120 (6)	0.5500 (3)	3.0 (3)	C2—C3—C4	121.1 (6)	C13-C12-014	107.9 (5)
014	0.5387 (5)	0.2345 (3)	0.5607 (2)	3.2 (2)	C2—C3—C7	126.8 (6)	C12-C13-N19	124.1 (6)
015	0.2845 (5)	0.1025 (4)	0.3942 (2)	3.8 (2)	C4—C3—C7	112.0 (5)	C12-014-C25	114.3 (4)
C16	0.4071 (9)	0.1288 (9)	0.3544 (4)	6.0 (5)	C3—C4—C5	119.7 (6)	C8-015-C16	112.7 (5)
C17	0.3286 (9)	0.1188 (9)	0.2889 (5)	7.5 (7)	C3-C4-C10	111.5 (5)	O15-C16-C17	109.8 (7)
C18	0.1575 (9)	0.3079 (7)	0.6101 (4)	3.9 (4)	C5-C4-C10	128.7 (6)	C13-N19-C24	117.0 (5)
N19	0.4941 (7)	0.4553 (4)	0.5959 (3)	3.2 (2)	C4C5C6	119.5 (7)	C21-C20-C25	118.4 (7)
C20	0.7338 (9)	0.1981 (6)	0.6549 (4)	3.7 (4)	C1-C6-C5	120.9 (7)	C20-C21-C22	121.3 (7)
C21	0.8157 (9)	0.2334 (7)	0.7123 (4)	4.0 (4)	C3—C7—C8	108.1 (5)	C21—C22—C23	119.3 (6)
C22	0.7888 (9)	0.3429 (7)	0.7351 (3)	3.6 (4)	C3-C7-C12	107.7 (5)	C21—C22—C26	122.7 (7)
C23	0.6765 (9)	0.4166 (6)	0.6972 (3)	3.1 (3)	C8-C7-C12	108.5 (5)	C23-C22-C26	118.0 (6)
C24	0.5942 (8)	0.3812 (6)	0.6372 (3)	2.9 (3)	C7—C8—C9	108.2 (5)	C22—C23—C24	119.6 (6)
C25	0.6200 (8)	0.2716 (7)	0.6189 (3)	3.0 (4)	C7—C8—O15	110.6 (5)	C22—C23—C29	119.5 (6)
C26	0.8687 (9)	0.3814 (9)	0.7958 (4)	5.0 (6)	C9-C8-015	107.5 (5)	C24—C23—C29	120.8 (6)
C27	0.8368 (9)	0.4854 (9)	0.8161 (4)	5.5 (5)	C8-C9-C10	108.6 (5)	N19-C24-C23	121.2 (6)
C28	0.7260 (9)	0.5562 (7)	0.7786 (5)	5.1 (4)	C4C10C9	109.8 (5)	N19-C24-C25	120.5 (6)
C29	0.6475 (9)	0.5247 (7)	0.7199 (4)	3.9 (4)	C4-C10-N11	109.8 (5)	C23-C24-C25	118.2 (6)
					C9-C10-N11	108.3 (5)	O14-C25-C20	117.6 (6)
				0	C10-N11-C12	111.2 (4)	O14-C25C24	119.3 (6)
Tat	ole 2. Sele	ected geome	tric parameter	rs (A, °)	C10-N11-C18	111.8 (5)	C20-C25-C24	123.0 (6)
C1 C2		1 412 (0)		1 467 (7)	C12N11C18	116.0 (5)	C22—C26—C27	120.7 (8)
CI = CZ		1.413 (9)	C12014	1.407 (7)	C7-C12-N11	109.4 (5)	C26—C27—C28	120.5 (8)
		1.388 (9)	C13—N19	1.2/3 (8)	C7-C12-C13	110.9 (5)	C27—C28—C29	121.4 (8)
$C_2 \rightarrow C_3$		1.309 (9)	014	1.382 (8)	C7—C12—O14	105.2 (4)	C23-C29-C28	119.7 (7)
$C_3 - C_4$		1.403 (8)	015016	1.438 (9)	C1 C2 C2 C4	0.0 (4)	C7 C8 015 C16	75 1 (5)
C3C7		1.308 (8)		1.448 (9)	$C_1 = C_2 = C_3 = C_4$	0.9 (4)	$C_{1} = C_{0} = C_{12} = C_{10}$	13.1 (3)
C4 - C3		1.398 (9)	N19	1.402 (8)	$C_1 = C_2 = C_3 = C_7$	178.3 (0)	$C_{1} = C_{12} = C_{13} = N_{19}$	-147.3(0)
$C_4 \rightarrow C_{10}$		1.490 (9)	$C_{20} = C_{21}$	1.303 (9)	$C_2 - C_3 - C_4 - C_3$	-1.4(4)	$C^{*}_{}C^{*$	169 1 (7)
		1.303 (9)	C20-C25	1.397 (9)	$C_2 = C_3 = C_4 = C_{10}$	-1/8.1 (0)		-108.1(7)
C_{1}		1.559 (9)	$C_{21} = C_{22}$	1.423 (9)	$C_2 = C_3 = C_7 = C_8$	-120.2(3)	C12 - C13 - R19 - C24	170 7 (7)
C/-CI2		1.542 (8)	$C_{22} = C_{23}$	1.411 (9)	(2-(3-(7-(12)))	122.8(3)	$C_{14}^{}C_{23}^{}C_{20}^{}C_{21}^{}C_{23}^{-$	1/9.7 (7)
		1.537 (9)	C22-C26	1.429 (9)	$C_3 = C_2 = C_1 = C_0$	-1.0(4)	C_{20} C_{21} C_{22} C_{23}	-0.7 (4)
$C_8 - 015$		1.428(7)	C23-C24	1.411 (9)	$C_{3} = C_{4} = C_{10} = N_{11}$	50.3(4)	$C_{20} - C_{21} - C_{22} - C_{20}$	170.1(7)
C_{9}		1.337 (9)	C23-C29	1.411 (9)	$C_{3} = C_{7} = C_{8} = C_{9}$	-01.3(4)	$C_{21} = C_{22} = C_{23} = C_{23}$	179.1(7)
		1.4/1(8)	C24-C23	1.390 (9)	$C_{3} = C_{7} = C_{8} = 0_{13}$	JU.J (4)	$C_{21} - C_{22} - C_{20} - C_{27}$	-1/0.0 (0)
		1.4/3(/)	$C_{20} - C_{21}$	1.333 (9)	$C_{3} = C_{7} = C_{12} = C_{13}$	- 12.3 (4)	$C_{22} = C_{21} = C_{20} = C_{23}$	-0.7(4)
C12 C12		1.4/3 (9)	C28_C20	1.377 (7)	$C_{3} = C_{1} = C_{12} = 0.14$	72.2 (5)	C22-C20-C27-C28	0.2 (3)
C12-C13		1.307 (9)	C20-C27	1,303 (9)		12.2 (3)		

Table 3. Seven crystallographic spirooxazine structure
--

Code	Molecule	IUPAC Molecule Name	C _{spiro} -O (Å)	C _{spiro} -C _{sp} , (Å)	O-C _{spiro} -C angle in oxazine ring (°)	C-O-C angle in oxazine ring (°)	Torsional angle (O-C-C-N) in oxazine ring (°)	χ ² Pearson test	Distance of O from phenyl mean plane (Å)	Distance of N from phenyl mean plane (Å)	Ref.
(1)		Sec Title	1.467	1.507	107.9	114.3	3.3	6241	0.016	0.148	(a)
(2)		1,3,3-trimethylspiro [indoline- 2,3'-[3H] naphth[2,1-b] [1,4]- oxazine]	1.465	1.504	110.7	119.2	3.4	7761	0.001	0.117	(b)
(3A)		1.3.3-trimethylspiro [indoline- 2.3'-[3H] pyrido[5.4-f] [1.4]- benoxazine]	1.464	1.498	109.7	117.6	2.8	14417	0.005	0.088	(c)
(3B)		1,3,3-trimethylspiro [indoline- 2,3'-[3H] pyrido[5,4-f] [1,4]- benoxazine]	1.465	1.499	109.2	116.7	2.9	19059	0.042	0.092	(c)
(4)		5 - methoxy - 1,3,3 - trimethylspiro [indoline-2,3'- [3H] pyrido [5,4-f] [1,4] benzoaxine]	1.467	1.517	110.4	120.6	1.3	500	0.021	0.095	(c)
(5A)	снуо	5-methoxy-1,2',3,3- tetramethylspiro [indoine-2,3'- [3H] pyrido [5,4-f] [1,4] benzoaxine]	1.475	1.534	108.3	116.6	8.6	20484	0.048	0.220	(c)
(5B)		5-methoxy-1,2',3,3- tetramethylspiro [indoine-2,3'- [3H] pyrido [5,4-f] [1,4] benzoaxine]	1,474	1.524	107.8	116.9	11.2	21202	0.072	0.263	(c)

References: (a) present work; (b) Millini, Del Piero, Allegrini, Crisci & Malatesta (1991); (c) Clegg et al. (1991).

.

Data collection: CAD-4 diffractometer software (Enraf-Nonius, 1977). Cell refinement: CAD-4 diffractometer software. Data reduction: local program. Program(s) used to solve structure: *MULTAN80* (Main *et al.*, 1980). Program(s) used to refine structure: *SHELX76* (Sheldrick, 1976). Molecular graphics: *ORTEP* (Johnson, 1965).

We would like to thank Dr J.-P. Astier [Centre de Recherches sur les Mécanismes de la Croissance Cristalline (CRMC2), Université d'Aix-Marseille III, Campus Luminy, France] for valuable technical assistance.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: PA1159). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Aldoshin, S. M. (1994). Mol. Cryst. Liq. Cryst. 246, 207-214.
- Chu, N. Y. C. (1990). Photochromism: Molecules and Systems, edited by H. Durr & H. Bouas-Laurent, ch. 10, pp. 493–509. Amsterdam: Elsevier.
- Clegg, W., Norman, N. C., Flood, T., Sallans, L., Kwak, W. S., Kwiatkowski, P. L. & Lasch, J. G. (1991). Acta Cryst. C47, 817– 824.
- Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Laréginie, P., Samat, A. & Guglielmetti, R. (1993). French Patent, 93/13 731.
- Laréginie, P., Samat, A. & Guglielmetti, R. (1995). *Heterocycl.* Commun. In the press.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Millini, R., Del Piero, G., Allegrini, P., Crisci, L. & Malatesta, V. (1991). Acta Cryst. C47, 2567–2569.
- Rickwood, M., Marsden, S. D., Ormsby, M. E., Staunton, A. L., Wood, D. W., Hepworth, J. P. & Gabbutt, C. D. (1994). *Mol. Cryst. Liq. Cryst.* 246, 17–24.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Tardieu, P., Dubest, R., Aubard, J., Kellmann, A., Tfibel, F., Samat, A. & Guglielmetti, R. (1992). *Helv. Chim. Acta*, **75**, 1185–1197.

Acta Cryst. (1995). C51, 1617-1619

8-Methylspiro(*syn*-10,11-benzo-8azatricyclo[5.2.2.0^{1,5}]undec-10-ene)-9,3'-[3*H*]naphth[1,2-*b*][1,4]oxazine

Gérard Pèpe

CRMC2-CNRS, Campus de Luminy, Case 913, 13288 Marseille CEDEX 9, France

PIERRE LARÉGINIE, ANDRÉ SAMAT AND ROBERT GUGLIELMETTI

Laboratoire de Chimie Organique, Faculté des Sciences de Luminy, GCOBO, URA CNRS 1320, 163 Avenue de Luminy, 13288 Marseille CEDEX 2, France

ELENA ZABALLOS

Universitat de Valencia, Facultate de Farmacia, Ave Vicent Andrès Estellès, 46100 Burjassot, Valencia, Spain

(Received 7 October 1994; accepted 3 January 1995)

Abstract

The title compound, $C_{26}H_{24}N_2O$, is of interest in the study of the effects of steric hindrance on photochromic properties.

Comment

In the field of organic photochromic compounds, spiro-[indoline-naphthoxazines], (1) (Chu, 1990), have been studied extensively for several years because of their good photochromic properties (Tardieu *et al.*, 1992; Rickwood *et al.*, 1994). In order to study the effect of the heterocyclic part, H, on the photochromic characteristics, we recently synthesized (Laréginie, Samat & Guglielmetti, 1995) and studied the threedimensional structure (Reboul *et al.*, 1995) of a spiro-[azabicyclonaphthoxazine], (2). To extend this preliminary work and to develop the correlation between the

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Crystallographica Section C ISSN 0108-2701 ©1995